GIANT DEEP-WATER SEEP MOUNDS ENCLOSED BY ANOXIC BASINAL CARBONATE STRATA: IMPLICATIONS FOR BASE METAL MINERALISATION IN THE MESOPROTEROZOIC BORDEN BASIN

ELIZABETH C. TURNER
CANADA-NUNAVUT GEOSCIENCE OFFICE
CORNWALLIS DISTRICT

Polaris
1982-2002
22 Mt
14% Zn+Pb
Ordovician host

Nanisivik
1976-2002
17 Mt
10% Zn+Pb
Mesoproterozoic host

BORDEN BASIN
Zn- & Fe-RICH SHOWINGS

Pb-RICH, Zn-POOR SHOWINGS

FEW SHOWINGS
RENEWED TECTONISM (EXTENSIONAL/COMPRESSIONAL?)

ONGOING, SUBTLE TECTONIC ACTIVITY (FORMERLY CONSIDERED QUIESCENT)

RIFTING
TYPE SECTION (1956) OF SOCIETY CLIFFS FORMATION
St. George’s Society Cliffs, near Arctic Bay
275 m of dolostone between shales
PRECAMBRIAN CARBONATES: A TREASURE-CHEST OF INFORMATION
SOCIETY CLIFFS FACIES DISTRIBUTION ALONG GRABEN AXIS according to KAH, 1996

WEST (NANISIVIK) — EAST (TAY SOUND)

Zn/Pb

MID-RAMP

TRANSITION ZONE

INNER RAMP

Kah’s study area

EASTERNMOST BORDEN PENINSULA

- GYPSIFEROUS REDBEDS
- GYPSIFEROUS DOLOMUDSTONE
- INTRACLAST PACK-GRAINSTONE
- SUBTIDAL MICROBIAL DOLOSTONE
- PERITIDAL MICROBIAL DOLOSTONE
- OOID-INTRACLAST GRAINSTONE
- THINLY BEDDED DOLOMUDSTONE
DARK BROWN-WEATHERING LAMINATED DOLOSTONE
SOCIETY CLIFFS FM. LAMINITES

WITH ‘CRACKLE BRECCIA’

WITH ‘RUBBLE BRECCIA’
SOCIETY CLIFFS FM. LAMINITES

WITH ‘CRACKLE BRECCIA’

WITH ‘RUBBLE BRECCIA’

PERITIDAL

STROMATOLITIC
LAMINITE PETROGRAPHY

Crackle Breccia (voids filled with dolomite)

Each Lamina Cored by an Organic-Rich Stylolite

LAMINITE STABLE ISOTOPE COMPOSITION

$\delta^{13}C$ depleted by 2‰ relative to contemporaneous strata on platform

Deposited from water with high organic carbon content
RIMMED PLATFORM

NORTHWEST

MEAN LOW WATER
STORM WAVE-BASE
BASE OF PHOTIC ZONE

UPPER SOCIETY CLIFFS FM.

SOUTHEAST

DISTALLY STEEPENED RAMP

NORTHWEST

MEAN LOW WATER
STORM WAVE-BASE
BASE OF PHOTIC ZONE

LOWER SOCIETY CLIFFS FM.

SOUTHEAST
• NO LAYERING
• NO STROMATOLITIC FABRIC
• No layering
• No stromatolitic fabric
COLD SEEPS

The Methane Biosphere
A scientist aboard the German submersible Jago took this photo through a porthole nearly 750 feet below the surface of the Black Sea. Methane bubbles furiously from the stalagmite-like columns, which have been created by billions of evolutionarily ancient one-celled microbes that don't breathe oxygen.
COLD SEEPS

- FOCUSED VENTING OF LOW-TEMPERATURE FLUIDS ONTO SEA FLOOR
- DEEP WATER SETTINGS
- TECTONICALLY / GRAVITATIONALLY UNSTABLE AREAS
- FLUID COMMONLY CONTAINS METHANE
- METHANE CONSUMED BY BACTERIA, RESULTING IN CARBONATE PRECIPITATION
STORM WAVE-BASE

BASE OF PHOTIC ZONE

CHEMOCLINE

anoxic deep-basin water

methane oxidised by methanotrophic bacteria, producing carbonate

background deposition of hemipelagic shale

CH_4
Zn- & Fe-RICH SHOWINGS

Pb-RICH, Zn-POOR SHOWINGS

FEW SHOWINGS
GEOMETRY OF NANISIVIK MOUND AND ORE BODY

Victor Bay Formation shale

GAS

CAP

NANISIVIK ORE BODY

MOUND (uncompactable & impermeable)

Upper Society Cliffs carbonate laminites

Lower Society Cliffs shale
IMPLICATIONS OF PRIMARY FACIES DISTRIBUTION (MOUNDS AND BASINAL LAMINITES):

1 – PROBABLE DEEP-BASIN ANOXIA THROUGH 3 SHALE/CARBONATE FORMATIONS

2 – ONGOING SYNSEDIMENTARY TECTONISM & FLUID CIRCULATION

3 – PRESENCE OF BURIED MOUNDS

IDEAL FOR SEDEX

POSSIBLE EARLY MOVEMENT OF METALLIFEROUS FLUIDS?

MOUND GEOMETRY CONTROLS LATER FLUID FLOW (NANISIVIK MINERALISATION)